| extension | φ:Q→Aut N | d | ρ | Label | ID |
| C32.1(He3⋊C2) = C92⋊2S3 | φ: He3⋊C2/C32 → S3 ⊆ Aut C32 | 27 | 3 | C3^2.1(He3:C2) | 486,61 |
| C32.2(He3⋊C2) = C34.7S3 | φ: He3⋊C2/C32 → S3 ⊆ Aut C32 | 18 | 6 | C3^2.2(He3:C2) | 486,147 |
| C32.3(He3⋊C2) = (C32×C9)⋊S3 | φ: He3⋊C2/C32 → S3 ⊆ Aut C32 | 54 | 6 | C3^2.3(He3:C2) | 486,149 |
| C32.4(He3⋊C2) = C3×C33⋊S3 | φ: He3⋊C2/C32 → S3 ⊆ Aut C32 | 18 | 6 | C3^2.4(He3:C2) | 486,165 |
| C32.5(He3⋊C2) = C3×He3.3S3 | φ: He3⋊C2/C32 → S3 ⊆ Aut C32 | 54 | 6 | C3^2.5(He3:C2) | 486,168 |
| C32.6(He3⋊C2) = C3×He3⋊S3 | φ: He3⋊C2/C32 → S3 ⊆ Aut C32 | 54 | 6 | C3^2.6(He3:C2) | 486,171 |
| C32.7(He3⋊C2) = C3×3- 1+2.S3 | φ: He3⋊C2/C32 → S3 ⊆ Aut C32 | 54 | 6 | C3^2.7(He3:C2) | 486,174 |
| C32.8(He3⋊C2) = C33⋊(C3×S3) | φ: He3⋊C2/C32 → S3 ⊆ Aut C32 | 27 | 18+ | C3^2.8(He3:C2) | 486,176 |
| C32.9(He3⋊C2) = He3.C3⋊2C6 | φ: He3⋊C2/C32 → S3 ⊆ Aut C32 | 27 | 18+ | C3^2.9(He3:C2) | 486,177 |
| C32.10(He3⋊C2) = He3⋊(C3×S3) | φ: He3⋊C2/C32 → S3 ⊆ Aut C32 | 27 | 18+ | C3^2.10(He3:C2) | 486,178 |
| C32.11(He3⋊C2) = C3.He3⋊C6 | φ: He3⋊C2/C32 → S3 ⊆ Aut C32 | 27 | 18+ | C3^2.11(He3:C2) | 486,179 |
| C32.12(He3⋊C2) = C3.2(C9⋊D9) | φ: He3⋊C2/He3 → C2 ⊆ Aut C32 | 162 | | C3^2.12(He3:C2) | 486,42 |
| C32.13(He3⋊C2) = (C3×He3)⋊S3 | φ: He3⋊C2/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.13(He3:C2) | 486,43 |
| C32.14(He3⋊C2) = (C3×He3).S3 | φ: He3⋊C2/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.14(He3:C2) | 486,44 |
| C32.15(He3⋊C2) = C33.(C3⋊S3) | φ: He3⋊C2/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.15(He3:C2) | 486,45 |
| C32.16(He3⋊C2) = C32⋊C9⋊6S3 | φ: He3⋊C2/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.16(He3:C2) | 486,46 |
| C32.17(He3⋊C2) = C3.(C33⋊S3) | φ: He3⋊C2/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.17(He3:C2) | 486,47 |
| C32.18(He3⋊C2) = C3.(He3⋊S3) | φ: He3⋊C2/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.18(He3:C2) | 486,48 |
| C32.19(He3⋊C2) = C32⋊C9.10S3 | φ: He3⋊C2/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.19(He3:C2) | 486,49 |
| C32.20(He3⋊C2) = C33⋊2D9 | φ: He3⋊C2/He3 → C2 ⊆ Aut C32 | 27 | | C3^2.20(He3:C2) | 486,52 |
| C32.21(He3⋊C2) = (C3×C9)⋊5D9 | φ: He3⋊C2/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.21(He3:C2) | 486,53 |
| C32.22(He3⋊C2) = (C3×C9)⋊6D9 | φ: He3⋊C2/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.22(He3:C2) | 486,54 |
| C32.23(He3⋊C2) = He3⋊2D9 | φ: He3⋊C2/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.23(He3:C2) | 486,56 |
| C32.24(He3⋊C2) = 3- 1+2⋊D9 | φ: He3⋊C2/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.24(He3:C2) | 486,57 |
| C32.25(He3⋊C2) = C3×C32⋊2D9 | φ: He3⋊C2/He3 → C2 ⊆ Aut C32 | 54 | | C3^2.25(He3:C2) | 486,135 |
| C32.26(He3⋊C2) = C33⋊6D9 | φ: He3⋊C2/He3 → C2 ⊆ Aut C32 | 54 | | C3^2.26(He3:C2) | 486,181 |
| C32.27(He3⋊C2) = C34⋊7S3 | φ: He3⋊C2/He3 → C2 ⊆ Aut C32 | 27 | | C3^2.27(He3:C2) | 486,185 |
| C32.28(He3⋊C2) = He3.(C3⋊S3) | φ: He3⋊C2/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.28(He3:C2) | 486,186 |
| C32.29(He3⋊C2) = C3⋊(He3⋊S3) | φ: He3⋊C2/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.29(He3:C2) | 486,187 |
| C32.30(He3⋊C2) = (C32×C9).S3 | φ: He3⋊C2/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.30(He3:C2) | 486,188 |